Quantum Heisenberg group

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1993 J. Phys. A: Math. Gen. 26 L929
(http://iopscience.iop.org/0305-4470/26/18/008)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 19:35

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Quantum Heisenberg group

B A Kupershmidt
The University of Tennessee Space Institute, Tullahoma, TN 37388-8897, USA

Received 10 February 1993, in final form 20 May 1993

Abstract

The Heisenberg algebra $h(3)$ is the Lie algebra of the Lie group $H(3)$ of 3×3 upper triangular matrices with the I's on the diagonal. This group is quantized. The dual algebra $h(3)^{*}$ is also quantized, resulting in a quantum coadjoint representation of the quantum group $H(3)_{a, b, c, d, m, n}$. The phase space $T^{*} H(3)$ is also quantized.

The Heisenberg algebra $h(3)$ is a three-dimensional Lie algebra with a basis e_{1}, e_{2}, e_{3} and with the commutation relations

$$
\begin{equation*}
\left[e_{1}, e_{2}\right]=e_{3} \quad\left[e_{1}, e_{3}\right]=\left[e_{2}, e_{3}\right]=0 \tag{1}
\end{equation*}
$$

From the matrix representation

$$
t=\left(\begin{array}{lll}
0 & t_{1} & t_{3} \tag{2}\\
0 & 0 & t_{2} \\
0 & 0 & 0
\end{array}\right)
$$

of an element $t=t_{1} e_{1}+t_{2} e_{2}+t_{3} e_{3}$ in $h(3)$, we see that the corresponding Lie group $H(3)$ is the group of 3 by 3 uppertriangular matrices with the 1 's on the diagonal

$$
H(3)=\left\{g=\left(\begin{array}{ccc}
1 & x_{1} & x_{3} \tag{3}\\
0 & 1 & x_{2} \\
0 & 0 & 1
\end{array}\right)\right\}
$$

Since

$$
g^{-1}=\left(\begin{array}{ccc}
1 & -x_{1} & x_{1} x_{2}-x_{3} \\
0 & 1 & -x_{2} \\
0 & 0 & 1
\end{array}\right)
$$

the adjoint action $A d$ of the Lie group $H(3)$ on its Lie algebra $h(3)$ has the form

$$
A d_{g}(t)=g \operatorname{tg}^{-1}=\left(\begin{array}{ccc}
0 & t_{1} & t_{3}-x_{2} t_{1}+x_{1} t_{2} \tag{4}\\
0 & 0 & t_{2} \\
0 & 0 & 0
\end{array}\right)
$$

If A_{1}, A_{2}, A_{3} are the coordinates on the dual space $h(3)^{*}$ in a basis dual to the basis e_{1}, e_{2}, e_{3} of $h(3)$, then the coadjoint representation of the Lie group $H(3)$ on the dual space $h(3)^{*}$ has the form

$$
A d_{g}^{*}=\left(A d_{g-1}\right)^{*}:\left(\begin{array}{c}
A_{1} \tag{5}\\
A_{2} \\
A_{3}
\end{array}\right) \longmapsto\left(\begin{array}{c}
A_{1}+x_{2} A_{3} \\
A_{2}-x_{1} A_{3} \\
A_{3}
\end{array}\right)=\left(\begin{array}{c}
\tilde{A}_{1} \\
\widetilde{A}_{2} \\
\tilde{A}_{3}
\end{array}\right)
$$

The natural linear Poisson brackets on $h(3)^{*}$ are

$$
\begin{equation*}
\left\{A_{1}, A_{2}\right\}=A_{3} \quad\left\{A_{1}, A_{3}\right\}=\left\{A_{2}, A_{3}\right\}=0 \tag{6}
\end{equation*}
$$

formulae dual to (1). The coadjoint action (5) preserves these linear Poisson brackets.
In order to quantize this classical picture, let us consider first the quasi-classical situation. Starting with the group $H(3)$, this means that we have to determine all multiplicative Poisson brackets on it, these define what is called Poisson Lie structures. (The second referee suggests that the reader may need a reference for the standard facts about quantum groups: see, e.g. Drinfel'd 1986.) Ignoring for a moment the question of Jacobi identities, the space of such (pre) Poisson brackets on the group $H(3)$ can be shown to be six dimensional

$$
\begin{align*}
& \left\{x_{1}, x_{2}\right\}=b x_{1}+a x_{2} \\
& \left\{x_{1}, x_{3}\right\}=c x_{1}+\frac{b}{2} x_{1}^{2}+m x_{2}+a x_{3} \tag{7}\\
& \left\{x_{2}, x_{3}\right\}=d x_{2}-\frac{a}{2} x_{2}^{2}+n x_{1}-b x_{3}
\end{align*}
$$

where a, b, c, d, m, n are arbitrary constants. The Jacobi identities impose the following two relations among these constants:

$$
\begin{equation*}
b(d-c)-2 a n=0 \quad a(c-d)-2 b m=0 \tag{8}
\end{equation*}
$$

Thus, the space of Lie Poisson structures on the group $H(3)$ is four dimensional.
Now, the coadjoint representation (5) of $H(3)$ on $h(3)^{*}$ is no longer a Poisson action since we have introduced non-zero Poisson brackets (7) on the group H (3) itself. To restore the hammony, the linear Poisson brackets (6) on $h(3)^{*}$ have to be modified. A straightforward computation shows that the most general Poisson brackets on $h(3)^{*}$ for which the coadjoint action (5) is Poisson, are of the form

$$
\begin{align*}
& \left\{A_{1}, A_{2}\right\}=A_{1} \varphi+A_{2} \psi+\theta \\
& \left\{A_{1}, A_{3}\right\}=A_{3} \psi+b A_{3}^{2} \tag{9}\\
& \left\{A_{2}, A_{3}\right\}=-A_{3} \varphi+a A_{3}^{2}
\end{align*}
$$

where φ, ψ, θ are arbitrary functions of A_{3}. The Jacobi identity among A_{1}, A_{2}, A_{3} imposes the relation

$$
\begin{equation*}
\left(\psi+b A_{3}\right) \frac{\mathrm{d} \varphi}{\mathrm{~d} A_{3}}=\left(\varphi-a A_{3}\right) \frac{\mathrm{d} \psi}{\mathrm{~d} A_{3}} \tag{10}
\end{equation*}
$$

If we require the invariant A_{3} of the coadjoint action to belong to the Poisson centre of $h(3)^{*}$, we get

$$
\varphi=a A_{3} \quad \psi=-b A_{3}
$$

so that the relation (10) is satisfied and formulae (9) take the final form
$\left\{A_{1}, A_{2}\right\}=A_{3}\left(a A_{1}-b A_{2}\right)+\theta\left(A_{3}\right) \quad\left\{A_{1}, A_{3}\right\}=\left\{A_{2}, A_{3}\right\}=0$.
This is our quasi-classical picture. As a quantum analogue of the quasi-classical formulae (7), (11) we set

$$
\begin{align*}
& {\left[x_{1}, x_{2}\right]=b x_{1}+a x_{2}} \\
& {\left[x_{2}, x_{3}\right]=d x_{2}-\frac{a}{2} x_{2}^{2}+n x_{1}-b x_{3}} \tag{12}\\
& {\left[x_{1}, x_{3}\right]=c x_{1}+\frac{b}{2} x_{1}^{2}+m x_{2}+a x_{3}}
\end{align*}
$$

and

$$
\begin{equation*}
\left[A_{1}, A_{2}\right]=A_{3}\left(a A_{1}-b A_{2}\right)+\theta\left(A_{3}\right) \quad\left[A_{1}, A_{3}\right]=\left[A_{2}, A_{3}\right]=0 \tag{13}
\end{equation*}
$$

where a, b, c, d, m, n are arbitrary constants, and $\theta\left(A_{3}\right)$ is an arbitrary function (e.g., $\theta\left(A_{3}\right)=A_{3}$). Formulae (12), (13) have the following easily verifiable properties:
(A) Formulae (12) are multiplicative. This means that if

$$
\bar{g}=\left(\begin{array}{ccc}
1 & \bar{x}_{1} & \bar{x}_{3} \\
0 & 1 & \bar{x}_{2} \\
0 & 0 & 1
\end{array}\right)
$$

and if $\left[x_{i}, \bar{x}_{j}\right]=0, \quad 1 \leqslant i, j \leqslant 3$, then the parameters X_{1}, X_{2}, X_{3} of the product

$$
g \bar{g}=\left(\begin{array}{ccc}
1 & X_{1} & X_{3} \\
0 & 1 & X_{2} \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
1 & x_{1}+\bar{x}_{1} & x_{3}+\bar{x}_{3}+x_{1} \bar{x}_{2} \\
0 & 1 & x_{2}+\bar{x}_{2} \\
0 & 0 & 1
\end{array}\right)
$$

satisfy again the defining commutation relations (12);
(B) The deformation (12) is flat (i.e., it satisfies the PBW property) iff (cf (8))

$$
\begin{equation*}
b(d-c)-2 a n=0 \quad a(c-d)-2 b m=0 \tag{14}
\end{equation*}
$$

(C) The coadjoint action (5) preserves the commutation relations (13);
(D) The inverse map i

$$
i(g)=g^{-1}
$$

changes the sign of all the constants a, b, c, d, m, n in (12). In the quasi-classical situation (7), this map is anti-Poisson.

Remarks. (i) For the Lie groups $H(n)$ of n by n upper triangular matrices with the 1 's on the diagonal, the Poisson and quantum formulae become increasingly messy for $n>3$.
(ii) In classical mechanics, on the phase space $T^{*} G$ of the configuration space of a Lie group G, the canonical symplectic from $\mathrm{d} p \wedge \mathrm{~d} q$ is invariant with respect to the lifted to $T^{*} G$ both left and right actions of G on G. In the quantum case one has two different pictures, one each for the left and the right actions of G on itself. For example, for the case at hand, with G being $H(3)$, the left action of $H(3)$ on itself has the form
$L_{x}:\left(\begin{array}{l}q_{1} \\ q_{2} \\ q_{3}\end{array}\right) \longmapsto\left(\begin{array}{c}q_{1}+x_{1} \\ q_{2}+x_{2} \\ q_{3}+x_{1} q_{2}+x_{3}\end{array}\right) \quad\left(\begin{array}{c}p_{1} \\ p_{2} \\ p_{3}\end{array}\right) \longmapsto\left(\begin{array}{c}p_{1} \\ p_{2}-x_{1} p_{3} \\ p_{3}\end{array}\right)$.
The form $p \mathrm{~d} q$ is preserved under this action, for each fixed $x \in H(3)$. Turning on the Poisson brackets (7) on $H(3)$ necessitates a modification in the canonical Poisson bracket $\left\{p_{i}, q_{j}\right\}=\delta_{i j}$ on $T^{*} H(3)$. There are many such modifications (cf formulae (9); that is why we avoid the R-matrix language). The simplest one has the form
$\left\{q_{i}, q_{j}\right\}$ as in (7) $\quad\left\{p_{1}, q_{i}\right\}=\delta_{1 i} \quad\left\{p_{3}, q_{i}\right\}=\delta_{3 i} \quad\left\{p_{2}, q_{1}\right\}=0$
$\left\{p_{2}, q_{2}\right\}=1-p_{3}\left(b q_{1}+a q_{2}\right) \quad\left\{p_{2}, q_{3}\right\}=-p_{3}\left(a q_{3}+\frac{b}{2} q_{1}^{2}+c q_{1}+m q_{2}\right)$
$\left\{p_{i}, p_{j}\right\}=0$.
The action (15) is now a Poisson map

$$
H(3) \times T^{*} H(3) \longrightarrow T^{*} H(3) .
$$

Formulae (16) can be quantized, as follows
$\left[q_{i}, q_{j}\right]$ as in (12) $\quad\left[p_{1}, q_{i}\right]=\delta_{1 i} h \quad\left[p_{3}, q_{i}\right]=\delta_{3 i} h \quad\left[p_{2}, q_{1}\right]=0$
$\left[p_{2}, q_{2}\right]=h-p_{3}\left(\dot{b} q_{1}+a q_{2}\right) \quad\left[p_{2}, q_{3}\right]=-p_{3}\left(a q_{3}+\frac{b}{2} q_{1}^{2}+c q_{1}+m q_{2}\right)$
$\left[p_{i}, p_{j}\right]=0$.
A direct check shows that the commutation relations (17) are preserved under the left action (15). For the right action, we have the following analogues of formulae (15)-(17):
$R_{x}:\left(\begin{array}{c}q_{1} \\ q_{2} \\ q_{3}\end{array}\right) \longmapsto\left(\begin{array}{c}q_{1}+x_{1} \\ q_{2}+x_{2} \\ q_{3}+x_{2} q_{1}+x_{3}\end{array}\right) \quad\left(\begin{array}{c}p_{1} \\ p_{2} \\ p_{3}\end{array}\right) \longmapsto\left(\begin{array}{c}p_{1}-x_{2} p_{3} \\ p_{2} \\ p_{3}\end{array}\right)$
$\left\{q_{i}, q_{j}\right\}$ as in (7) $\quad\left\{p_{2}, q_{i}\right\}=\delta_{2 i} \quad\left\{p_{3}, q_{i}\right\}=\delta_{3 i} \quad\left\{p_{1}, q_{2}\right\}=0$
$\left\{p_{1}, q_{1}\right\}=1+p_{3}\left(b q_{1}+a q_{2}\right) \quad\left\{p_{1}, q_{3}\right\}=p_{3}\left(b q_{3}+\frac{a}{2} q_{2}^{2}-d q_{2}-n q_{1}\right)$
$\left\{p_{i}, p_{j}\right\}=0$
$\left[q_{i}, q_{j}\right]$ as in (12) $\quad\left[p_{2}, q_{i}\right]=h \delta_{2 i} \quad\left[p_{3}, q_{i}\right]=h \delta_{3 i} \quad\left[p_{1}, q_{2}\right]=0$
$\left[p_{1}, q_{1}\right]=h+p_{3}\left(b q_{1}+a q_{2}\right) \quad\left[p_{1}, q_{3}\right]=p_{3}\left(b q_{3}+\frac{a}{2} q_{2}^{2}-d q_{2}-n q_{1}\right)$
$\left[p_{i}, p_{j}\right]=0$.

We see that formulae involving the left action, the right action, and the coadjoint action, are all different.

Remark. The r-matrix langunge has been avoided so far, in recognition of the minor role r-matrix notions play for th Heisenberg group: if $r=\alpha e_{1} \wedge e_{2}+\beta e_{1} \wedge e_{3}+\gamma e_{2} \wedge e_{3}$ is an element of $h(3) \wedge h(3)$ then r automatically satisfies the GYBE (generalized Yang-Baxter equation), while r is the classical r-matrix iff $\alpha=0$. Such a r-matrix leads to the case

$$
\begin{equation*}
a=b=m=n=0 \quad c=d=\alpha \tag{21}
\end{equation*}
$$

of the Poisson brackets (7), which is only a one-dimensional line in a four-dimensional space. Notice that classical r-matrices yield zero Poisson brackets on the group. Similarly, the commutation relations (12) can be derived from the R-matrix ansatz

$$
\begin{equation*}
R g_{1} g_{2}=g_{2} g_{1} R \quad g_{1}=g \otimes 1 \quad g_{2}=1 \otimes g \tag{22}
\end{equation*}
$$

only for the case (21), when

$$
\begin{equation*}
R=1 \otimes 1+c\left(E_{12} \otimes E_{23}-E_{23} \otimes E_{12}\right) \tag{23}
\end{equation*}
$$

(The first referee points out the paper Celeghini et al (1991) where this one-dimensional part of the full quantum relations is found.)

References

Drinfel'd V G 1986 Proc. Int. Congr. Math. (Berkeley) pp 798-820
Celeghini E, Giachetti R, Socace E and Tarlini M 1991 J. Math. Phys. 32 1155-8

